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Abstract

A common problem of excavation machinery based on mechanical actions is the unknown interaction of the cutting
tools with various types of soils. Due to the involved non-linearities, the numerical analysis of such phenomena is very
complex. To overcome these drawbacks some authors proposed to model the soil as a collection of spheres.

In this paper we apply a strategy for soil modelling which is based on discretization of the soil with rigid disks and
suitable contact models. The basic idea is to concentrate at the contact level the real mechanical behaviour of the soil.
The goal is achieved by extending the general concept of contact as an unilateral constraint condition, through a suit-
able constitutive law: the contact laws have been implemented in the node-to-segment contact formulation within the
framework of the penalty method.

The aim of this work is to study the behaviour of some soils under different loading conditions, and to develop con-
tact constitutive laws suitable for the discrete model. In order to carry out the proposed strategy a “macro” and a
“micro” level are established, and macromechanical and micromechanical models are developed. In the micromechan-
ical model the mutual contact interaction between two disks is studied, while the macromechanical model deals with the
behaviour of a regular array of disks. The framework for the plastic behaviour of the contact element consists of a fail-
ure criterion; a one-dimensional, rate-independent elasto-plastic flow rule for normal and tangential force; two specific
yield surfaces, and a hardening or softening law. In this paper we have focused our attention on the simulation of soils
and rocks: a new constitutive contact law is developed and applied for the simulation of different soils with different
testing conditions (such as uniaxial and shear tests).
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1. Introduction

A common feature of many civil engineering and mining projects is that the earth surface has to be remod-
elled or removed for specific construction needs. Nowadays manpower is replaced by blasting technique and
excavation machines like dredges, dozers, trenchers, roadheaders, etc. All these machines have their specific
advantages and applications. An usual problem of excavation machinery based on mechanical actions is the
unknown interaction of the cutting tools with various types of rock and more in general with geological set-
tings. The problem is very important for the industry. In fact the interaction of the cutting tools with various
soils determines a different wear and consequently different economical costs for the excavation. Due to the
involved non-linearities, the numerical analysis of such phenomena is very complex. The classical continuum
approach for modelling of soil presents several drawbacks, especially when large strains and crack propaga-
tion take place. To overcome the non-linear aspects some authors proposed to model the soil as a collection
of spheres (Cundall and Strack, 1979; Emeriault and Cambou, 1996; Potyondy et al., 1996).

In this paper we apply a strategy for soil modelling based on discretization of the soil with rigid disks
(plane strain) and suitable contact models. The idea is to concentrate at the contact level the real mechan-
ical behaviour of the soil. The goal is achieved by extending the general concept of contact as a unilateral
constraint condition, through a suitable constitutive law. For this purpose constitutive laws have been
implemented in the node-to-segment contact formulation within the framework of the penalty method.
In this case the penalty parameter is not a constant, but it is transformed into a non-linear function through
the constitutive law itself (Zavarise et al., 1992). In such a way any tool penetration, crack propagation
or change of shape of the soil will be transformed into a series of contact openings and/or slidings.

In our strategy the continuum is discretized as a collection of rigid disks suitably linked with special con-
tact elements. Hence the displacement of a control volume (see Fig. 1) results from the overlapping of the
disks. The equivalent mechanical answer is then governed by the contact law, which transforms the classical
error of a penalty contact formulation into the required displacement field. With this respect it has to be
remarked that

e the contact formulation deals with nodal forces and relative displacements;

e the contact force is the resultant of the contact stresses on the contact area associated with each contact
node;

e a contact constitutive law is suitably tuned to get the equivalent global answer, still in terms of forces and
displacements;

e from the above values a mean equivalent strain and stress field can be recovered for the control volume
(see Fig. 1).
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Fig. 1. Equivalent stress and strain definition for the micromechanical model.
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In the following we refer to these last two quantities. An analogous equivalence can be defined also
for the tensile behaviour, using a cohesive contact law.

The aim of this work is to study the behaviour of some soils under different loading conditions, and to
develop contact constitutive laws suitable for the discrete model. In order to carry out the proposed strategy
a “macro” and a “micro” level are established: in the micromechanical model the mutual contact interac-
tion between two disks is studied. An elasto-plastic frictional contact law is developed to simulate the real
behaviour of geomaterials (Nardin et al., 2003a). In the macromechanical model the behaviour of a random
array of disks is described. Upscaling will be needed to link the micro- to the macromodel.

The following strategy has been proposed to obtain the “tracking” relationship:

e a behaviour of the micromechanical model similar to that of the real soil will first be obtained, where the
values of the microparameters will be defined by a trial and error procedure;

e the values of these parameters will be calibrated through an upscaling law to reproduce with the mac-
romechanical model the real behaviour of the soil.

The contact models are based on the classical concepts of elasticity and plasticity theories, with
suitable modifications. The framework for the plastic behaviour consists of a failure criterion; a
one-dimensional, rate-independent elasto-plastic flow rule for normal and tangential force; two specific
yield surfaces, and a hardening or softening law (according to the real behaviour of the examined mate-
rial).

In this paper we have focused our attention on the micromechanical model: a new constitutive contact
law is developed and applied to the simulation of different soils and different tests (such as uniaxial and
shear tests). Finally the behaviour of a regular and irregular array of disks will be studied. Numerical results
show that by tuning appropriately the parameters, the behaviour of real soil can be simulated in a very
effective way.

2. The Contact laws

In a previous paper (Nardin et al., 2003a) we have adapted some well-known failure criteria, such as
Drucker-Prager, Burzynski and Tsai-Wu, to this contact framework. Successively a new constitutive law
has been developed. This approach differs from the previous one because we started from the geomet-
rical definition of the contact element (in the framework of the finite element theory) and developed a
suitable constitutive law for normal and tangential contact. A multi-parameters failure criterion com-
pletes this procedure. This approach involves a greater number of parameters; however is more general
than the previous one because it gives more freedom for matching experimentally observed behaviour.
This is particularly important when using very complex tools for parameter identification (such as Arti-
ficial Neural Network (ANN) technique), because the constitutive model must be sufficiently rich such
as to well cover the expected real behaviour to be modelled (Nardin et al., 2003b; Lefik and Schrefler,
2002).

A sensitivity analysis for this new model is carried out in this paper. Then the application of the model
to different soils and the behaviour of a regular and irregular array of disks will be shown.

2.1. Micromechanical model

We represent the continuum as an assembly of cylindrical rigid discrete elements (disks). The reproduc-
tion of material properties is obtained through a suitable contact law between the disks. The contact law is
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based on the classical concepts of elasto-plasticity theories, with suitable modifications. At contact level the
elastic modulus, shear modulus and the Poisson ratio are here not linked through the classical relation, be-
cause the normal and tangential behaviour are treated separately. The normal and tangential elastic contact
stiffnesses are supposed to remain constant. According to these assumptions the elastic part of the normal
stress—strain relation is linear. The elasto-plastic relationships are established for both normal and tangen-
tial direction (Simo and Hughes, 1998) as

oi(Fi) = E; - (ai(g) — & (&), i=nt (1)

where g; is the normal or tangential stress, ¢; is the total strain, & is the plastic component of the total strain,
F; is the contact force, g; is the total relative displacement between two disks, g¥ is the plastic component
of the relative displacement, n,¢ are the normal and tangential directions; E; are the parameters which
characterize the elastic properties of the soil (see Fig. 2).

The yield function is defined for the normal stress—strain relation and for the tangential one. A general
non-linear yield criterion has been formulated as follows:

f(oi,04) =| o, | =[oy + H()]; i=n,t (2)

where H(o) is the expression of plastic strain and is written as function of the softening or hardening param-
eter, o : [0, 7] — R, gy is the limit of the elastic range. By changing these parameters we can define different
shapes of the yield locus and simulate different soil behaviours.

The plastic strain increment, in normal and tangential direction, can be completely described for any
admissible state of stress g, € E, by

& =7y, - sign(oy);

E, = {(o1,0) € R x R, | flon,ou) <O} i=nt (3)

where &°: [0,7] — R is the time derivative of the plastic strain (normal or tangential), 7 is the time
parameter, y > 0 is the absolute value of the slip rate and its variation is calculated trough the consistency

Fig. 2. Schematization of the contact law components in the micromechanical model.
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parameter Ay and E, is the domain of the admissible stresses. The adopted evolution equations for o in the
normal and in the tangential contact law are

o = |enls o= [&7)] )

The value of the variable o, and the shape of the tangential plastic function H(o;) are independent from
the respective normal values. The shape of the tangential yield surface depends directly on the applied fail-
ure criterion. In our approach the variability of the tangential stress due to the influence of the normal one
is expressed by means of a two-dimensional failure criterion. This means that at each step the numerical
value of the normal stress is fixed and a two-dimensional yield surface is used to establish the elastic range
of the tangential stress, as shown in Fig. 3.

In the failure criterion the slip between two surfaces of a continuum is assumed to occurs when the shear
stress, 7, on any plane at a point in the soil material reaches a critical value, which depends non-linearly
upon the normal stress in the same plane.

In the strength criterion the shear strength of a rock-like material is made up of two parts varying with
the normal applied stress: an elastic “‘cohesive” part and a frictional plastic part. The shear strength can be
written as follows:

T = Ei(on) - (e — &) — (n(on) + H(2)) (5)

where 7 is the tangential critical stress; o,, is the applied normal stress; ¢ and &} are respectively the total and
the plastic tangential strain, H is the non-linear function of plasticity described in Eq. (2), and « is obtained
from the second of Eq. (4). The plastic softening (or hardening) frictional behaviour starts when the value
of 7 exceeds the limit 7, which is a function of the normal applied stress.

The proposed plastic function was developed to obtain a single yield function for different materials. The
adopted plastic function is expressed as follows:

Hy(20) = by (ot 4 bs)™ + byoty + bs (6)

Hy(or) = by (o + bs)™ + byoy + b (7)
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Fig. 3. Schematization of the 2D yield locus for one-dimensional constitutive law.
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where by, b,, b3, by and bs are the parameters of plastic function, which are defined separately for normal
tension, normal compression and shear actions. By changing these parameters we can define different
shapes of the yield surface and consequently simulate very different soil and rock behaviours.

3. Sensitivity analysis of the plastic function

The parameters of the plastic function at microscopic level do not have a real physical meaning. For this
reason, as previously stated, we tune them through trial and error procedure: it will be shown that if the
microscale behaviour is realistic the behaviour of regular and irregular arrays of spheres can be simulated
with a suitable upscaling laws. Another reason to use the trial and error is that we are developing also
another procedure, using the ANN, to move from micro- to macromodel (Nardin et al., 2003b).

In order to analyse the influence of the various parameters on the plastic behaviour of the material, the
sensitivity of the response of some material parameters is investigated. These parameters are related to the
behaviour of the plastic function and the results of these analyses are shown in the sequel.

By analyzing the variation of parameters by, b, b3, by, and bs it is possible to deduce the shape of the
softening curve and reproduce the possible real physical behaviour at macrolevel. For constant by, bs,
b4, and bs values the plastic surface in function of «; and b, is depicted in Fig. 4. The |b,| increments increase
the residual strength in compression. This means that when b, decreases the material becomes more ductile.
In Fig. 5 the bi-dimensional elasto-plastic stress—strain relationships for different values of b, are collected.

The effect of a by =|b3| increment in the plastic function, keeping the other parameters constant, is de-
picted in Fig. 6. A bi-dimensional representation of the global yield curve in Fig. 7 is shown. In these cases
when b; increases the material presents an increasing brittleness and a decrease of residual strength in com-
pression. Moreover the curvature of the plastic function increases when b; decreases (see curve b;=2.5 in
Fig. 7).

Finally the variation of b4 is studied, keeping constant the other parameters. On the contrary of the pre-
vious cases, when b, increases the material presents an increasing ductility and a greater residual strength in
compression. As limit case when b4 is equal to zero the material becomes elastic perfectly plastic (curve
bs=0 in Fig. 8).

The mutual variation of all parameters determines different softening behaviour of the material. First,
when contemporarily b; and |bs| increase and b, decreases we obtain a very brittle material: after the peak
stress the strength of the material suddenly drops (curve 5,=-9000 in Fig. 8). On contrary, a very ductile
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Fig. 4. Three-dimensional representation of the plastic function: variation of the b, and « parameter’s.
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Fig. 5. Stress—strain relationship of an ideal material: numerical results for different values of b, (uniaxial test).
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Fig. 6. Three-dimensional representation of the plastic function: variation of the b, b3 and o parameter’s.

material can be defined by decreasing b, and |b;| and increasing by. All intermediate combinations of
parameter values define various softening behaviours.

4. Numerical applications

The numerical simulation of uniaxial traction and compression for different materials is carried out
through the micromechanical model, following the experimental procedure proposed by Okubo and Fukui
(1996).

We try to obtain qualitatively the real behaviour and define, by trial and error procedure, the values of
the microparameters. These parameters, in fact, at microscopic level do not have a real physical meaning. In
the next Section we propose some scaling laws to move from the microscopic to the macroscopic level to
reproduce the behaviour of a real soil sample.
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Fig. 7. Stress—strain relationship of an ideal material: numerical results for different values of »; and b3 (uniaxial test).
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Fig. 8. Stress-—strain relationship of an ideal material: numerical results for different values of b, (uniaxial test).

4.1. Akiyoshi marble

The plastic function for this material is linear in compression and hyperbolic in tension. The comparison
between numerical and experimental results is shown in Figs. 9 and 10. All the values of the tuned param-
eters are listed in Table 1.

4.2. Kimachi sandstone

As for the previous materials the micromechanical model is tuned by trial and error procedure to
approximate as well as possible the real behaviour of this rock. All the parameters are collected in the
Table 2.
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Fig. 9. Uniaxial traction test for Akiyoshi marble: comparison between the experimental test and numerical simulation obtained with
the micromechanical model.
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Fig. 10. Uniaxial compression test for Akiyoshi marble: comparison between the experimental test and numerical simulation obtained
with the micromechanical model.

The comparison of the results of the numerical model and experimental test are shown in Fig. 11. These
results evidence that the new law can capture also the behaviour of quite brittle material as the Kimachi
sandstone. Here the plastic function is the algebraic composition of linear and hyperbolic functions.

4.3. Tako sandstone

As previously described, also for Tako sandstone a numerical simulation of the uniaxial traction through
the micromechanical model is carried out. The parameters of the contact law, which are tuned by trial and
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Table 1
Parameters for normal and tangential contact laws for Akiyoshi marble

Parameters for normal contact law
E,=9.629E+9 N/m?
Hy(e0)=by(otn +bs)"* +baotn + b3

Parameters for compression
b, =0.0, b=—4.5x10 b3=0.0, by=1.0, bs=0.0, 6. =67.0E+6 N/m>

Parameters for traction
by=2.45, b,=0.0, by=—2.45, by=—4.0x10%, bs=1.0, 6,=2.6E+6 N/m>
2,=0.00025 m

Parameters for tangential contact law
E,=3.5E+9 N/m?
Hy(00)=b1(0tg+ bs)?*+ byo, + by
by =0.0, b,=—1.0x10% b3=0.0, b4=1.0, b5=0.0, g=0.0058 mm

Yield stress function for tangential contact n(o,)
c=1.0, n=0.7,n(c,)=n"(ct+0ay,)

Young’s modulus
Plastic function for normal contact

Yield stress (force) for compression

Yield stress (force) for traction
Critical displacement (traction cut-off)

Tangential modulus
Plastic function for shear field
Critical displacement value for tangential stress

Limit of elastic field

Table 2
Parameters for normal and tangential contact laws for Kimachi sandstone

Parameters for normal contact law
E=49E+9 N/m?

Plastic function
Hy(e0)=by(otn+bs)* +baotn+ b3

Parameters for traction

by=2.7, by=—4.695x10% by=—2.7, by=—5.0x10% bs=1.0, 6,=3.5E+6 N/m>

2,=0.025 m

Parameters for tangential contact law
E,=18E+9 N/m?
Hy(et)=by(et,+bs)"*+ byt + by
b1=0.0, by=—1.0x10%, b3=0.0, b4=1.0, bs=0.0 g=0.0025 mm

Yield stress function for tangential contact n(a,)
c=1.0
n=0.7
n(en)=n-(c+oy)

Young’s modulus

Yield stress (force) for traction
Critical displacement (traction cut-off)

Tangential modulus
Plastic function for shear field
Critical displacement value for tangential stress

Cohesive contribute
Stress field parameter
Limit of elastic field

error procedure, are summarized in Table 3. In all these cases the behaviour of the chosen plasticity func-

tions seems satisfactory (see also Fig. 12).

5. Macromechanical model

This section deals with the macroscale description of regular packings of disks, starting from microscale
parameters, by defining a transition between the micro- and macromechanical models as shown below.
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Fig. 11. Uniaxial traction tests for Kimachi sandstone: comparison between the experimental test and numerical simulation obtained
with the micromechanical model.

Table 3
Parameters for normal and tangential contact laws for Tako sandstone

Parameters for normal contact law
E,=4.0E+9 N/m? Young’s modulus

Plastic function
Ho(o0) = by (o +bs)P+ bootn + by

Parameters for traction
by =2.2, by=—4.695x10% b3=—-22, by=—4.5x10° bs=1.0, 6,=3.0E+6 N/m> Yield stress (force) for traction

2,=0.025 mm Critical displacement (traction cut-off)

Parameters for tangential contact law

E,=18E+9 N/m? Tangential modulus

Hy(0)=by(0r+ bs)**+ bro+ by Plastic function for shear field

b=0.0, b,=0.0, b3=0.0, b4=1.0, bs=0.0, g,=0.00125 mm Critical displacement value for tangential stress
Yield stress function for tangential contact n(a,)

c=1.0 Cohesive contribute

n=0.7 Stress field parameter

n(on)=n-(ct+on) Limit of elastic field

The very complex nature of the problem and the different adopted models show that the influence of the
microscale parameters on the strength properties is not uniquely defined (Walton, 1987; Misra and Chang,
1993). The theory of asymptotic homogenization was used in (Huang et al., 1998) with a different contact
model. Here we use another procedure for the discrete-continuum linkage: the scaling laws for material
properties at the two levels (micro and macro) are constructed using dimensional analysis (Buckingham
theorem, Becker, 1976; Kaneko et al., 2003) and numerical uniaxial tests.

Our goal is to carried out a first attempt to define a relation between the micro- and macroparameters
by performing several numerical simulation of standard tests, such as uniaxial traction and compression.
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Fig. 12. Uniaxial traction tests for Tako sandstone: comparison between the experimental test and numerical simulation obtained with
the micromechanical model.

The obtained numerical results are fitted through a power function which relates some micro- and macro-
parameters.

For these reasons a particle assembly with the following characteristic: H/L=2, L/R=25, Ry.,/R=0,
R=0.5 mm is constructed. This represents standard initial configuration and is denoted as “Configuration
O”. This standard sample contains about 1250 particles. Its porosity with a near zero mean stress is around
n=22%.

The elasto-plastic properties and uniaxial strengths of a particle assembly are examined using the
response of this disks assembly of size Lx H under uniaxial compression or tension.

Here we report the final results only, for more specific considerations about this procedure the reader
is referred e.g. to Nardin (2003).

The dependence of the elastic constants on the micromechanical parameters is expressed through the
following scaling laws:

B E L
E = E, @ (E ,R) (8)
E L
:(D, _ =
=57 )

where v is the real Poisson ratio, the functions @ and @, are dimensionless, R is the disk radius and E
(the real Young modulus) can be scaled by either E,, or E;. The “real values” refer to the continuum.
Similarly, the compressive strength of the material, X, and the tensile strength, X, can be written as

I =S, (10)
21 :S¢1 (11)

where the scaling quantity S can be chosen as one of the following parameters E,, E;, 6/R,n(c,)/R. The
scale function can be expressed as

Doy = D ER,Myg,é (12)
' ’ O_nﬁ Ont E’'R

This last function is defined with respect to the quantity used to scale the strength.
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In this way the dependence of the scaled parameters, o./2. and the scaled Young modulus E on the ratio
L/R are determined. As previously stated, the numerical curve obtained through the uniaxial tests has been
fitted. The fitting function is represented in both cases by an exponential curve (see also Nardin, 2003)

y=Ae 4 B (13)

where y and x correspond in the case of Eq. (8) respectively to the scaled Young modulus E and ratio L/R.
The values of the parameters 4, B and C are: A=-2.0, B=0.98, C=0.260.

The same fitting function is used for Egs. (10) and (11), but in this case y and x correspond, respectively,
to 6./2. and the ratio L/R. In this case the values of the parameters 4, B and C are: A=1.4; B=0.04;
C=26.5.

As previously stated, the plastic microparameters do not have a real physical meaning and do not have
corresponding macroparameters. However, we can observe that the plastic function defines the slope of the
stress—strain relationship in the plastic range as the elastic modulus defines the slope in the elastic range.
For this reason a scaling law similar to Eq. (8) is applied to the parameters of the plastic function.

6. Numerical applications with regular packing (1250 disks)

The uniaxial traction tests of the same specimens of Section 4 are simulated with a regular packing of
1250 disks. The radius of the disks is 0.5 mm. Starting from the parameters defined in Section 4 these values
are tuned for the different materials as shown in the sequel.

6.1. Akiyoshi marble

In this simulation the real behaviour of the rock is reproduced (see Figs. 13 and 14). The discrepancies
with the experimental results are more evident in the elastic range of the traction test (Fig. 13), while in the
compression test the results of the numerical model correspond quite well with the real behaviour of the
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Fig. 13. Uniaxial traction test for Akiyoshi marble: comparison between the experimental test and numerical simulation with a
collection of 1250 disks.



5958 A. Nardin, B. Schrefler | International Journal of Solids and Structures 41 (2004) 5945-5965

[—&— experimental test —%— NUMERICAL SIMULATION |

-0.016 -0.%4 -0.012 -0.01 -0.008 -0.006

T T U
-0.004 -0.002

A

ra

=20

N
Ny

stress [MPa]

N

£,
/"
Va

AC
=40

N

=00

N
N

o
=00

strain

Fig. 14. Uniaxial compression test for Akiyoshi marble: comparison between the experimental test and numerical simulation with a

collection of 1250 disks.

Table 4
Contact parameters for Akiyoshi marble: regular packing of 1250 disks

Parameters for normal contact law
E.=9.243E+9 N/m?
Hy()=by(otn+bs)"*+ by +b3

Parameters for compression
b =0.0, b,=—4.320x10%, b3=0.0, b,=1.0, bs=0.0, 6.=134.0E+6 N/m>

Parameters fOI‘ traction
by =49, b,=0.0, b3=—4.9, by=—2.0x10% bs=1.0, 6,=5.2E+6 N/m>
2,=0.025m

Parameters for tangential contact law
E,=2.1551E+9 N/m?
Hyo))=by (ot +bs)P*+ bty + by
b1 =0.0, b,=1.0x10%, h3=0.0, by=1.0, bs=0.0, g;=0.00175 mm

Yield stress function for tangential contact n(o,)
c=1.0
n=0.7
n(on)=n-(c+ay)

Young’s modulus
Plastic function for normal direction

Yield stress (force) for compression

Yield stress (force) for traction
Critical displacement (traction cut-off)

Tangential modulus
Plastic function for shear field
Critical displacement value for tangential stress

Cohesive contribute
Stress field parameter
Limit of elastic field

material (Fig. 14). All the tuned parameters of this material are collected in Table 4. A comparison with

Table 1 shows the influence of the scaling procedure.

In the case of a regular array of disks the parameter values obtained with the proposed scaling laws
reproduce well the actual behaviour of the different rocks. There is, in fact, a good coincidence between
the numerical results of the micro- and macromodels. This is due to the fact that in a regular packing
the contact distribution is homogeneous and the number of active contact points for each disks is constant
during the tests. This permits to obtain the same results with different number of disks.
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6.2. Kimachi sandstone
The studied material is the Kimachi sandstone characterized by
. density 9=2.17 g/cm?;
. modulus of elasticity E=4.9E+9 N/m?;

. compressive strength o.=32.0E+6 N/m?%;
. tensile strength o, =3.5E+6 N/m?.

AW N =

This material is tested only in uniaxial traction and the test is conducted under displacements control.
The experimental stress—strain curve of the uniaxial traction test of the Kimachi sandstone is depicted in
Fig. 15. From the analysis of this curve it is possible to underline that Kimachi sandstone is a rock that
presents a relatively ductile behaviour. The stress—strain curve in the pre-failure elastic range starts to devi-
ate from the linear behaviour at an early stage and the non-linear elastic behaviour is relatively larger than
that of granite and andesite. After the peak load the strength of the material suddenly drops to 20% of the
peak value. After this loss of strength the loading capacity decreases continuously until it reaches 5% of the
peak strength, as depicted in Fig. 15. The parameters at contact level are tuned and normalized respect to
the height of the specimen. The values of these parameters are summarized in Table 5. The comparison be-
tween the numerical and experimental results shows that also in this case the model is able to capture the
real material behaviour. This is specially true for the softening branch of the stress—strain curve. Again Figs.
15 and 11 are very similar: a good approximation at microscopic level is necessary for this method to obtain
a satisfactory behaviour at macroscopic level, which is needed for real simulation.

6.3. Tako sandstone
The studied material is the Tako sandstone rock characterized by the following properties:

1. density 9=2.16 g/cm?;
2. modulus of elasticity E=4.0E+9 N/m?;

| —a—experimental test —=— NUMERICAL SIMULATION |
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Fig. 15. Uniaxial traction test for Kimachi sandstone: comparison between the experimental test and numerical simulation with a
collection of 1250 disks.
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Table 5
Contact parameters for Kimachi sandstone: regular packing of 1250 disks

Parameters for normal contact law
E,=4.820E+9 N/m? Young’s modulus
H () =by(on + bS)b“ +byo,t+ b3 Plastic function for normal direction

Parameters for traction
by =54, b,=0.0, by=—5.4, by=—2.45x10%, bs=1.0, 6,=7.0E+6 N/m> Yield stress (force) for traction
2,=0.025 Critical displacement (traction cut-off)

Parameters for tangential contact law

E,=18E+9 N/m? Tangential modulus
H1(oc)=b1(a1+b5)b“+bzzx1+b3 Plastic function for shear field
b1 =0.0, b=—2.94x10%, h3=0.0, b,=1.0, b5s=0.0, g =0.0025 mm Critical displacement value for tangential stress

Yield stress function for tangential contact n(o,)

c=1.0 Cohesive contribute
n=0.7 Stress field parameter
n(on)=n-(ct+on) Limit of elastic field

3. compressive strength o,=32.0E+6 N/m?;
4. tensile strength ¢,=3.0E+6 N/m?.

This material is tested only in uniaxial traction and the test is conducted under control of displacements.
The experimental stress—strain curve of the uniaxial traction test of the Tako sandstone is depicted in Fig.
16. From this curve it is possible to see that Tako sandstone is also a rock-material that presents a relatively
ductile behaviour. The peak stress of the Tako sandstone is considerably smaller than that of Kimachi
sandstone. However, the stress—strain curve of the two sandstones presents little difference in the global
shape. In fact, also for Tako sandstone the stress—strain curve in the elastic range deviates from the linear
behaviour at an early stage.

After the peak load the strength of the material suddenly drops to 23% of the peak value: after this the
loading capacity decreases continuously until it reaches 2% of the peak strength, as shown in Fig. 16.

|+experimenta| test —#— NUMERICAL SIMULATION |
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Fig. 16. Uniaxial traction test for Tako sandstone: comparison between the experimental test and numerical simulation with a
collection.
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Table 6
Contact parameters for Tako sandstone: regular packing of 1250 disks

Parameters for normal contact law
E,=3.92E+9 N/m> Young’s modulus
Hn(oc):bl(oc,,+b5)1“+b2an+b3 plastic function for normal direction

Parameters for traction
by =44, b,=0.0, by=—4.4, by=—-2.25x10%, bs=1.0, 6,=6.0E+6 N/m> Yield stress (force) for traction

2,=0.025 mm Critical displacem. (traction cut-off)

Parameters for tangential contact law

E,=1.764E+9 N /m> Tangential modulus
Hy(e)=b (ot +bs)?+ by + by Plastic function for shear field
b1=0.0, b,=0.0, b3=0.0, b4=1.0, bs=0.0, g;=0.00125 mm Critical displacement value for tangential stress

Yield stress function for tangential contact n(a,)

c=1.0 Cohesive contribute
n=0.7 Stress field parameter
n(on)=n-(ctay) Limit of elastic field

In this simulation the original size of the real specimen is reproduced: the specimen is discretized with a
collection of 1250 disks. Also in this case the upscaling procedure to obtain correct value of parameters of
micromechanical model is applied. The comparison between experimental results and numerical simulation
is depicted in Fig. 16. The values of the parameters at contact level were tuned as shown in Table 6.

7. Numerical applications with irregular packing (1250 disks)

So far only the macroscale material properties of “Configuration O’ have been studied. In order to
investigate the dispersion of material properties of an irregular assembly due to the random generating
algorithm, five different configurations have been generated with the same geometrical parameters as
“Configuration O”’. The contact properties for these configurations are taken to be the same as those of
Section 5.

The uniaxial traction tests of the same specimens of Section 4 are simulated with an irregular packing of
1250 disks. The radius of the disks is 0.5 mm.

The irregular packing of the disks is obtained by imposing a random geometrical perturbation on the
initial geometrical arrangement. This was obtained by a variation of the coordinates of several disks in
the initial configuration (see Fig. 17), as shown in Borja and Wren (1995).

The analysis of several numerical tests evidenced that:

e to obtain the same uniaxial strength and Young modulus (in traction and compression) with the irreg-
ular packing it is necessary change the value of the normal and tangential contact stiffness in a range
of =20%, respect the regular packing;

e this variation is due to the different number of active contacts in function of random packing (this is in
good accordance with (Chang and Misra, 1990; Bathurst and Rothenburg, 1992)).

On the basis of these considerations, starting from the parameters defined in Section 4, the values of
the microparameters are tuned using the relations (8)—(13) for the different materials as shown in the
sequel.
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Fig. 17. Example of irregular packing of disks.

7.1. Akiyoshi marble

In this simulation the real behaviour of the rock is reproduced (see Fig. 18). The discrepancies with the
micromechanical model are more evident in the plastic range of the traction test (Fig. 18), while the elastic
part corresponds quite well with the behaviour of the micromechanical model. All the tuned parameters
of this material are collected in Table 7. A comparison with Table 4 shows the influence of the scaling
procedure.

The values of the microparameters, determined with the scaling laws, capture the macrobehaviour of the
irregular packing under uniaxial traction. It is possible to remark that only the normal contact stiffness is
changed respect with the regular packing. This is due, as previously stated, to the global increment of active
contacts. The new values of the contact stiffnesses are determined through numerical tests. The comparison
between the results of the regular and irregular packing shows that in the irregular one the influence of the
tangential component and of the increasing number of contact points produce a more brittle behaviour.
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Fig. 18. Uniaxial traction test for Akiyoshi marble: comparison between the experimental test and numerical micro- and irregular
macromodel.
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Table 7
Contact parameters for Akiyoshi marble: irregular packing of 1250 disks

Parameters for normal contact law
E,=7.450E+9 N/m?
Hy() = by (0 +b5)"*+ byt +bs

Parameters for compression
b, =0.0, b=—4.320x10% b3=0.0, by=1.0, bs=0.0, o.=134.0E+6 N/m>

Parameters for traction
by=4.9, b,=0.0, b3=—4.9, by=—2.0x10°, bs=1.0, 6,=5.2E+6 N/m’
2,=0.025 m
Parameters for tangential contact law
E,=2.1551E+9 N/m?
Hy(0)=by (ot +b5)>+ bty + b3
b1 =0.0, b,=1.0x10%, b3=0.0, b4=1.0, b5=0.0, 2¢=0.00175 mm

Yield stress function for tangential contact n(a,)
c=1.0
n=0.7
"(Un):VI '(C+O_n)

Young’s modulus
Plastic function for normal direction

Yield stress (force) for compression

Yield stress (force) for traction
Critical displacement (traction cut-off)

Tangential modulus
Plastic function for shear field
Critical displacement value for tangential stress

Cohesive contribute
Stress field parameter
Limit of elastic field

7.2. Tako sandstone

The numerical simulation of the Tako sandstone is carried out using the same random packing of disks
of the Akiyoshi marble. The comparison between experimental results and numerical simulation is depicted
in Fig. 19. The values of the parameters at contact level are tuned as shown in Table 8.

In this case the reproduction of the “brittle” softening behaviour of this material presents some draw-
backs. In fact, there are discrepancies with the micromechanical model especially in the plastic range.
The residual tensile stress is almost 20% larger with respect to the real behaviour of the material. A possible
explanation of this difference is that the Tako sandstone presents a very brittle behaviour: in this case the
tuning of the cut-off tensile value influences contemporarily the peak stress and the residual tensile stress.
Also in this case the comparison between the regular and irregular packings shows that the irregular array
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Fig. 19. Uniaxial traction test for Tako sandstone: comparison between the experimental test and numerical micro- and irregular

macromodel.
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Table 8
Contact parameters for Tako sandstone: irregular packing of 1250 disks

Parameters for normal contact law
E,=3.270E+9 N/m? Young’s modulus
H () =by(on + 175)174 +byo,t+ b3 Plastic function for normal direction

Parameters for traction
by=4.4, b,=0.0, by=—4.4, by=—2.25x10%, bs=1.0, 6,=6.0E+6 N/m> Yield stress (force) for traction

2,=0.025 mm Critical displacement (traction cut-off)

Parameters for tangential contact law

E,=18E+9 N/m? Tangential modulus
Hy(o))=by (ot +bs)>*+ bty + by Plastic function for shear field
b1=0.0, b,=0.0, b3=0.0, by=1.0, b5s=0.0, g;=0.00125 mm Critical displacement value for tangential stress

Yield stress function for tangential contact n(o,)

c=1.0 Cohesive contribute
n=0.7 Stress field parameter
n(on)=n-(ct+on) Limit of elastic field

presents a more brittle behaviour. Otherwise, the elastic part corresponds quite well with the micromechan-
ical model. The comparison shown in Fig. 19 evidences, however, that the shape of the curves of the micro-
and macromodels is similar.

8. Conclusions

A quasi-static model based on a collection of disks in contact has been enhanced by adopting sophisti-
cated contact models. With these models we have simulated the experimentally observed soil behaviour. In
the first part we concentrate our attention on the contact formulation and on the constitutive model for
normal and tangential contact. We have shown that with a simple model, composed of two disks in contact,
real constitutive behaviour can be obtained. We have also carried out a sensitivity analysis on the param-
eters of the local contact laws. In the second part we have focused our attention on a collection of disks and
on parameters tuning. With a regular and irregular packing of more than 1000 disks we have simulated the
real behaviour of soils and rocks. Finally we have compared the results of the micro- and macromechanical
models.
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